For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Dr. S. (Sandro) Pezzelle

Faculty of Science
ILLC

Visiting address
  • Science Park 900
  • Room number: L6.55
Postal address
  • Postbus 94242
    1090 GE Amsterdam
Contact details
  • Publications

    2025

    • Bai, Y., & Pezzelle, S. (2025). If I feel smart, I will do the right thing: Combining Complementary Multimodal Information in Visual Language Models. In W. E. Zhang, X. Dai, D. Elliott, B. Fang, M. Sim, H. Zhuang, & W. Chen (Eds.), The Workshop of Evaluation of Multi-Modal Generation : proceedings of the First Workshop of Evaluation of Multi-Modal Generation: EvalMG 2025 : January, 2025 (pp. 24-39). Association for Computational Linguistics. https://aclanthology.org/2025.evalmg-1.3/ [details]

    2024

    • Hanna, M. W., Pezzelle, S., & Belinkov, Y. (2024). Have Faith in Faithfulness: Going Beyond Circuit Overlap When Finding Model Mechanisms. In Proceedings of COLM 2024 https://openreview.net/pdf?id=TZ0CCGDcuT
    • Mehrparvar, B., & Pezzelle, S. (2024). Detecting and Translating Language Ambiguity with Multilingual LLMs. In J. Sälevä, & A. Owodunni (Eds.), The 4th Workshop on Multilingual Representation Learning : proceedings of the workshop: MRL 2024 : November 16, 2024 (pp. 310–323). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.mrl-1.26 [details]
    • Surikuchi, A. K., Fernández, R., & Pezzelle, S. (2024). Not (yet) the whole story: Evaluating Visual Storytelling Requires More than Measuring Coherence, Grounding, and Repetition. In Y. Al-Onaizan, M. Bansal, & Y.-N. Chen (Eds.), The 2024 Conference on Empirical Methods in Natural Language Processing : Findings of EMNLP 2024: EMNLP 2024 : November 12-16, 2024 (pp. 11597–11611). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.findings-emnlp.679 [details]
    • Takmaz, E., Pezzelle, S., & Fernández, R. (2024). Describing Images Fast and Slow: Quantifying and Predicting the Variation in Human Signals during Visuo-Linguistic Processes. In Y. Graham, & M. Purver (Eds.), The 18th Conference of the European Chapter of the Association for Computational Linguistics : Proceedings of the Conference: EACL 2024 : March 17-22, 2024 (Vol. 1, pp. 2072-2087). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.eacl-long.126 [details]
    • Testoni, A., Sprott, J., & Pezzelle, S. (2024). Naming, Describing, and Quantifying Visual Objects in Humans and LLMs. In L.-W. Ku, A. Martins, & V. Srikumar (Eds.), The 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024) : proceedings of the conference: ACL 2024 : August 11-16, 2024 (Vol. 2, pp. 547-557). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.acl-short.50 [details]
    • Wildenburg, F., Hanna, M., & Pezzelle, S. (2024). Do Pre-Trained Language Models Detect and Understand Semantic Underspecification? Ask the DUST!. In L.-W. Ku, A. Martins, & V. Srikumar (Eds.), The 62nd Annual Meeting of the Association for Computational Linguistics : Findings of the Association for Computational Linguistics: ACL 2024: ACL 2024 : August 11-16, 2024 (pp. 9598-9613). Association for Computational Linguistics. https://doi.org/10.48550/arXiv.2402.12486, https://doi.org/10.18653/v1/2024.findings-acl.572 [details]

    2023

    • Buijtelaar, L., & Pezzelle, S. (2023). A Psycholinguistic Analysis of BERT's Representations of Compounds. In A. Vlachos, & I. Augenstein (Eds.), The 17th Conference of the European Chapter of the Association for Computational Linguistics: EACL 2023 : proceedings of the conference : May 2-6, 2023 (pp. 2230–2241). Association for Computational Linguistics. https://doi.org/10.48550/arXiv.2302.07232, https://doi.org/10.18653/v1/2023.eacl-main.163 [details]
    • Chen, X., Fernández, R., & Pezzelle, S. (2023). The BLA Benchmark: Investigating Basic Language Abilities of Pre-Trained Multimodal Models. In H. Bouamar, J. Pino, & K. Bali (Eds.), The 2023 Conference on Empirical Methods in Natural Language Processing: EMNLP 2023 : Proceedings of the Conference : December 6-10, 2023 (pp. 5817–5830). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.emnlp-main.356 [details]
    • Hanna, M., Belinkov, Y., & Pezzelle, S. (2023). When Language Models Fall in Love: Animacy Processing in Transformer Language Models. In H. Bouamar, J. Pino, & K. Bali (Eds.), The 2023 Conference on Empirical Methods in Natural Language Processing: EMNLP 2023 : Proceedings of the Conference : December 6-10, 2023 (pp. 12120-12135). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.emnlp-main.744 [details]
    • Pezzelle, S. (2023). Dealing with Semantic Underspecification in Multimodal NLP. In A. Rogers, J. Boyd-Graper, & N. Okazaki (Eds.), The 61st Conference of the Association for Computational Linguistics: ACL 2023 : Proceedings of the Conference : July 9-14, 2023 (Vol. 1, pp. 12098-12112). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.acl-long.675 [details]
    • Pezzelle, S., & Fernández, R. (2023). Semantic Adaptation to the Interpretation of Gradable Adjectives via Active Linguistic Interaction. Cognitive Science, 47(2), Article e13248. https://doi.org/10.1111/cogs.13248 [details]
    • Surikuchi, A., Pezzelle, S., & Fernández, R. (2023). GROOViST: A Metric for Grounding Objects in Visual Storytelling. In H. Bouamor, J. Pino, & K. Bali (Eds.), The 2023 Conference on Empirical Methods in Natural Language Processing: EMNLP 2023 : Proceedings of the Conference : December 6-10, 2023 (pp. 3331-3339). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.emnlp-main.202 [details]
    • Takmaz, E., Brandizzi, N., Giulianelli, M., Pezzelle, S., & Fernández, R. (2023). Speaking the Language of Your Listener: Audience-Aware Adaptation via Plug-and-Play Theory of Mind. In A. Rogers, J. Boyd-Graber, & N. Okazaki (Eds.), Findings of the Association for Computational Linguistics: ACL 2023: July 9-14, 2023 (pp. 4198-4217). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.findings-acl.258 [details]

    2022

    • Jansen, L., Laichter, Š. L., Sinclair, A., van der Goot, M. J., Fernández, R., & Pezzelle, S. (2022). Controllable Text Generation for All Ages: Evaluating a Plug-and-Play Approach to Age-Adapted Dialogue. In A. Bosselut, K. Chandu, K. Dhole, V. Gangal, S. Gehrmann, Y. Jernite, J. Novikova, & L. Perez-Beltrachini (Eds.), 2nd Workshop on Natural Language Generation, Evaluation and Metrics: GEM 2022 : proceedings of the workshop : December 7, 2022 (pp. 172-188). Association for Computational Linguistics. https://doi.org/https://aclanthology.org/2022.gem-1.14 [details]
    • Takmaz, E., Pezzelle, S., & Fernández, R. (2022). Less Descriptive yet Discriminative: Quantifying the Properties of Multimodal Referring Utterances via CLIP. In E. Chersoni, N. Hollenstein, C. Jacobs, Y. Oseki, L. Prévot, & E. Santus (Eds.), Workshop on Cognitive Modeling and Computational Linguistics: CMCL 2022 : proceedings of the workshop : May 26, 2022 (pp. 36-42). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.cmcl-1.4 [details]

    2021

    • Bernardi, R., & Pezzelle, S. (2021). Linguistic issues behind visual question answering. Language and Linguistics Compass, 15(6), Article e12417. https://doi.org/10.1111/lnc3.12417 [details]
    • Jansen, L., Sinclair, A., van der Goot, M. J., Fernández, R., & Pezzelle, S. (2021). Detecting age-related linguistic patterns in dialogue: Toward adaptive conversational systems. In E. Fersini, M. Passarotti, & V. Patti (Eds.), Proceedings of the Eighth Italian Conference on Computational Linguistics: Milan, Italy, June 29-July 1, 2022 Article 47 (CEUR Workshop Proceedings; Vol. 3033). CEUR-WS. https://ceur-ws.org/Vol-3033/paper47.pdf [details]
    • Jolly, S., Pezzelle, S., & Nabi, M. (2021). EaSe: A Diagnostic Tool for VQA Based on Answer Diversity. In K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, & Y. Zhou (Eds.), The 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: NAACL-HLT 2021 : proceedings of the conference : June 6-11, 2021 (pp. 2407-2414). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.naacl-main.192 [details]
    • Parfenova, I., Elliott, D., Fernández, R., & Pezzelle, S. (2021). Probing Cross-Modal Representations in Multi-Step Relational Reasoning. In A. Rogers, I. Calixto, I. Vulić, N. Saphra, N. Kassner, O.-M. Camburu, T. Bansal, & V. Shwartz (Eds.), The 6th Workshop on Representation Learning for NLP: RepL4NLP 2021 : proceedings of the workshop : August 6, 2021, Bangkok, Thailand (online) (pp. 152–162). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.repl4nlp-1.16 [details]
    • Pezzelle, S. (Ed.) (2021). Identifying, Analyzing, and Overcoming Challenges in Vision and Language Research. Frontiers Research Topics.
    • Pezzelle, S., Takmaz, E., & Fernández, R. (2021). Word Representation Learning in Multimodal Pre-Trained Transformers: An Intrinsic Evaluation. Transactions of the Association of Computational Linguistics, 9, 1563–1579. https://doi.org/10.1162/tacl_a_00443 [details]

    2020

    • Gualdoni, E., Bernardi, R., Fernández, R., & Pezzelle, S. (2020). Grounded and Ungrounded Referring Expressions in Human Dialogues: Language Mirrors Different Grounding Conditions. In J. Monti, F. Dell'Orletta, & F. Tamburini (Eds.), Proceedings of the Seventh Italian Conference on Computational Linguistics: Bologna, Italy, March 1-3, 2021 Article 38 (CEUR Workshop Proceedings; Vol. 2769). CEUR-WS. http://ceur-ws.org/Vol-2769/paper_38.pdf [details]
    • Pezzelle, S., & Marelli, M. (2020). Do semantic features capture a syntactic classification of compounds? Insights from compositional distributional semantics. In S. Schulte im Walde, & E. Smolka (Eds.), The role of constituents in multiword expressions: An interdisciplinary, cross-lingual perspective (pp. 33-60). (Phraseology and Multiword Expressions; Vol. 4). Language Science Press. https://doi.org/10.5281/zenodo.3598556 [details]
    • Pezzelle, S., Greco, C., Gandolfi, G., Gualdoni, E., & Bernardi, R. (2020). Be Different to Be Better!: A Benchmark to Leverage the Complementarity of Language and Vision. In T. Cohn, Y. He, & Y. Liu (Eds.), Findings of the Association for Computational Linguistics : Findings of ACL: EMNLP 2020: 16-20 November, 2020 (pp. 2751-2767). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.findings-emnlp.248 [details]
    • Takmaz, E., Giulianelli, M., Pezzelle, S., Sinclair, A., & Fernández, R. (2020). Refer, Reuse, Reduce: Generating Subsequent References in Visual and Conversational Contexts. In B. Webber, T. Cohn, Y. He, & Y. Liu (Eds.), 2020 Conference on Empirical Methods in Natural Language Processing: EMNLP 2020 : proceedings of the conference : November 16-20, 2020 (pp. 4350-4368). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.emnlp-main.353 [details]
    • Takmaz, E., Pezzelle, S., Beinborn, L., & Fernández, R. (2020). Generating Image Descriptions via Sequential Cross-Modal Alignment Guided by Human Gaze. In B. Webber, T. Cohn, Y. He, & Y. Liu (Eds.), 2020 Conference on Empirical Methods in Natural Language Processing: EMNLP 2020 : proceedings of the conference : November 16-20, 2020 (pp. 4664–4677). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.emnlp-main.377 [details]

    2019

    • Pezzelle, S., & Fernández, R. (2019). Big Generalizations with Small Data: Exploring the Role of Training Samples in Learning Adjectives of Size. In A. Mogadala, D. Klakow, S. Pezzelle, & M.-F. Moens (Eds.), Beyond Vision and LANguage: inTEgrating Real-world kNowledge (LANTERN): EMNLP-IJCNLP 2019 : proceedings of the workshop : November 3, 2019, Hong Kong, China (pp. 18-23). The Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-6403 [details]
    • Pezzelle, S., & Fernández, R. (2019). Is the Red Square Big? MALeViC: Modeling Adjectives Leveraging Visual Contexts. In K. Inui, J. Jiang, V. Ng, & X. Wan (Eds.), 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing: EMNLP-IJCNLP 2019 : proceedings of the conference : November 3-7, 2019, Hong Kong, China (pp. 2865-2876). The Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1285 [details]
    • Testoni, A., Pezzelle, S., & Bernardi, R. (2019). Quantifiers in a Multimodal World: Hallucinating Vision with Language and Sound. In E. Chersoni, C. Jacobs, A. Lenci, T. Linzen, L. Prévot, & E. Santus (Eds.), Cognitive Modeling and Computational Linguistics: NAACL HLT 2019 : proceedings of the workshop : June 7, 2019, Minneapolis, USA (pp. 105-116). The Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-2912 [details]

    2018

    • Pezzelle, S., Steinert Threlkeld, S., Bernardi, R., & Szymanik, J. (2018). Some of Them Can be Guessed! Exploring the Effect of Linguistic Context in Predicting Quantifiers. In I. Gurevych, & Y. Miyao (Eds.), ACL 2018 : The 56th Annual Meeting of the Association for Computational Linguistics: proceedings of the conference : July 15-20, 2018, Melbourne, Australia (Vol. 2, pp. 114-119). The Association for Computational Linguistics. https://doi.org/10.18653/v1/P18-2019 [details]

    2016

    • Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N., Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., & Fernández, R. (2016). The LAMBADA dataset: Word prediction requiring a broad discourse context. In K. Erk, & N. A. Smith (Eds.), The 54th Annual Meeting of the Association for Computational Linguistics : ACL 2016: proceedings of the conference : August 7-12, 2016, Berlin Germany (Vol. 1, pp. 1525-1534). Association for Computational Linguistics. https://doi.org/10.18653/v1/P16-1144 [details]

    2023

    • van der Goot, M. J., Dolinšek, S., Jansen, L., Sinclair, A. J., Fernandez Rovira, R., & Pezzelle, S. (2023). Adapting the language of conversational systems to different age groups: An experimental study. Paper presented at Etmaal van de Communicatiewetenschap, Enschede.

    2022

    • Takmaz, E., Pezzelle, S., & Fernandez Rovira, R. (2022). Time Alignment between Gaze and Speech in Image Descriptions: Exploring Theories of Linearization. Abstract from 44th Annual Meeting of the Cognitive Science Society. https://escholarship.org/uc/item/83w56904

    2021

    • Jansen, L., Sinclair, A. J., van der Goot, M. J., Fernandez Rovira, R., & Pezzelle, S. (2021). Detecting age-related linguistic patterns in dialogue: Toward adaptive conversa-tional systems. Paper presented at CLIC-it 2021: Eighth Italian Conference on Computational Linguistics , Milan, Italy.
    • van der Goot, M. J., Georgiou, M., Dolinšek, Š., Jansen, L., Sinclair, A. J., Fernández, R., & Pezzelle, S. (2021). Exploring the potential of adapting conversational systems to different age groups: A pilot study. Paper presented at Conversations 2021. https://conversations2021.files.wordpress.com/2021/11/conversations_2021_positionpaper_20_vandergoot-1.pdf

    2020

    Prize / grant

    • Cinà, G. & Pezzelle, S. (2023). UvA Interfaculty Seed grant.
    • Pezzelle, S., Fernández, R. & van der Goot, M. (2020). Exploring Adaptation of Conversational Systems to Different Age Groups.

    Journal editor

    • Pezzelle, S. (editor), Klakow, D. (editor), Akata, Z. (editor), Moens, M.-F. (editor), Mosbach, M. (editor) & Hedderich, M. (editor) (2021). The Third Workshop Beyond Vision and LANguage: inTEgrating Real-world kNowledge (Event). https://www.lantern.uni-saarland.de/2021/
    • Pezzelle, S. (editor), Mogadala, A. (editor), Klakow, D. (editor), Moens, M.-F. (editor) & Akata, Z. (editor) (2020). The Second Workshop Beyond Vision and LANguage: inTEgrating Real-world kNowledge (Event). https://www.lantern.uni-saarland.de/2020/
    • Pezzelle, S. (editor), Mogadala, A. (editor), Klakow, D. (editor) & Moens, M.-F. (editor) (2019). The First Workshop Beyond Vision and LANguage:inTEgrating Real-world kNowledge (LANTERN) (Event), Hong Kong. https://www.lantern.uni-saarland.de/

    Talk / presentation

    • Pezzelle, S. (speaker) (28-11-2024). Not (yet) the whole story: The need for human-like evaluation of visual LLMs in multimodal communicative tasks, Fine-grained Evaluation of Vision and Language Models workshop, Bozen.
    • Pezzelle, S. (speaker) (24-10-2024). Implicit and Underspecified Language as a Communicative Testbed for Large Language Models, Dealing with Meaning Variation in NLP 2024, Utrecht.
    • Pezzelle, S. (speaker) (18-10-2024). Gen-AI and the future of HRM: Open challenges from NLP, Generative AI in the Future of HRM, Amsterdam.
    • Pezzelle, S. (speaker) (1-10-2024). Implicit and Underspecified Language as a Communicative Testbed for Large Language Models, Perspectives in NLP x Humanities, Cognition, and Social Sciences, Aarhus.
    • Pezzelle, S. (speaker) (13-9-2024). Leveraging gaze data in image description generation: Towards more human-like visually-grounded NLP models, MultiplEYE Mid-Term Conference 2024, Tirana.
    • Pezzelle, S. (speaker) (15-8-2024). From semantic understanding to human-like communication: Implicit and underspecified language as a testbed for large language models, 13th Edition of the Workshop on Cognitive Modeling and Computational Linguistics, CMCL 2024, Bangkok.
    • Pezzelle, S. (speaker) (24-5-2024). Dealing with implicit and underspecified language: A semantic challenge for large language models, Tilburg University.
    • Pezzelle, S. (speaker) (23-4-2024). Large Language Models as Interlocutors: Between Reliability and Deconstruction, Uva AI x Cultural Production Seminar, Amsterdam.
    • Pezzelle, S. (speaker) (5-4-2024). From NLP to General Intelligence: Directions and Open Challenges, Fluido.
    • Pezzelle, S. (speaker) (13-3-2024). From Word Representation to Communicative Success: Beyond Image-Text Alignment in Language-and-Vision Modeling, Heriot-Watt University.
    • Pezzelle, S. (speaker) (28-2-2024). Dealing with implicit and underspecified language: A semantic challenge for large language models, COLT Seminar at UPF, Barcelona, Barcelona.
    • Pezzelle, S. (speaker) (26-2-2024). Dealing with implicit and underspecified language: A semantic challenge for large language models, Amazon Science Barcelona.
    • Pezzelle, S. (speaker) (25-1-2024). A Psycholinguistic Analysis of BERT's Representations of Compounds, Using computational models to bridge between neurobiology, psychology, and linguistic theory workshop, Nijmegen.
    • Pezzelle, S. (speaker) (11-1-2024). A Psycholinguistic Analysis of BERT's Representations of Compounds, HumanCLAIM workshop, Amsterdam.
    • Pezzelle, S. (speaker) (23-11-2022). Controllable Text Generation for All Ages: Evaluating a Plug-and-Play Approach to Age-Adapted Dialogue, Conversations 2022: 6th international workshop on chatbot research.
    • Pezzelle, S. (speaker) (30-6-2022). Detecting Age-Related Linguistic Patterns in Dialogue: Toward Adaptive Conversational Systems, Eighth Italian Conference on Computational Linguistics, Milan.
    • Pezzelle, S. (speaker) (22-6-2022). Modeling gradable adjectives leveraging visual contexts, University of Milano-Bicocca.
    • Pezzelle, S. (speaker) (23-5-2022). Word Representation Learning in Multimodal Pre-Trained Transformers: An Intrinsic Evaluation, 60th Annual Meeting of the Association for Computational Linguistics, Dublin.
    • Pezzelle, S. (speaker) (17-5-2022). Semantic adaptation through active information seeking: A case study on gradable adjectives, CoSaQ final workshop, Amsterdam.
    • Pezzelle, S. (speaker) (7-3-2022). Visually-grounded semantics in multimodal Transformers (and humans), Center for Mind/Brain Sciences, CIMeC, University of Trento, Rovereto, Italy..
    • Pezzelle, S. (speaker) (14-12-2021). Visually-grounded semantics in deep neural networks (and humans).
    • Pezzelle, S. (speaker) (21-6-2021). Integration of language and vision in multimodal pre-trained Transformers.
    • Pezzelle, S. (speaker) (7-5-2021). Semantic adaptation to the interpretation of gradable adjectives via passive exposure and active information seeking.
    • Pezzelle, S. (speaker) (18-3-2021). Be Different to Be Better! A Benchmark to Leverage the Complementarity of Language and Vision, TAB meeting.
    • Pezzelle, S. (speaker) (25-2-2021). Be Different to Be Better! A Benchmark to Leverage the Complementarity of Language and Vision, ELLIS NLP Workshop.

    Others

    • Pezzelle, S. (visiting researcher) (19-2-2024 - 1-3-2024). Universitat Pompeu Fabra (UPF) (visiting an external institution).
    • Pezzelle, S. (visiting researcher) (4-4-2022 - 15-4-2022). Center for Mind/Brain Sciences, CIMeC, University of Trento, Rovereto, Italy. (visiting an external institution).
    • Pezzelle, S. (organiser) (20-4-2021). The Third Workshop Beyond Vision and LANguage: inTEgrating Real-world kNowledge (organising a conference, workshop, ...).
    • Pezzelle, S. (organiser), Mogadala, A. (organiser), Klakow, D. (organiser), Moens, M.-F. (organiser) & Akata, Z. (organiser) (13-12-2020). The Second Workshop Beyond Vision and LANguage: inTEgrating Real-world kNowledge (organising a conference, workshop, ...). https://www.lantern.uni-saarland.de/2020/overview/
    • Pezzelle, S. (organiser), Mogadala, A. (organiser), Klakow, D. (organiser) & Moens, M.-F. (organiser) (3-11-2019). The First Workshop Beyond Vision and LANguage:inTEgrating Real-world kNowledge (LANTERN), Hong Kong (organising a conference, workshop, ...). https://www.lantern.uni-saarland.de/

    2024

    • Takmaz, E. K. (2024). Visual and linguistic processes in deep neural networks: A cognitive perspective. [Thesis, fully internal, Universiteit van Amsterdam]. [details]

    2025

    • Bavaresco, A., de Heer Kloots, M., Pezzelle, S., Fernández, R., Bavaresco, A., de Heer Kloots, M., Pezzelle, S. & Fernández, R. (15-4-2025). Modelling Multimodal Integration in Human Concept Processing with Vision-Language Models. Zenodo. https://doi.org/10.5281/zenodo.15221180

    2023

    2021

    2019

    2016

    • Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q., Bernardi, R. B., Pezzelle, S., Baroni, M., Boleda, G. & Fernández, R. (2016). The LAMBADA dataset. Zenodo. https://doi.org/10.5281/zenodo.2630551
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    • IVADO Labs
      Scientific advisor for AI projects.