
Integration of Campus Wide Information systems using a hub and spoke
architecture.

Alan Berg, Jan Bode, Joost Bataille

Central Computing Services, Universiteit van Amsterdam, The Netherlands.
a.m.berg@uva.nl, J.A.Bode@uva.nl, J.R.L.M.Bataille@uva.nl

Abstract

The Universiteit van Amsterdam (UvA) [12] is
geographically displaced throughout the millennium old
capital city. As a reflection of this and of the devolved
powers of the organization there exists�s a diversity of
information systems and solutions scattered physically,
architecturally and administratively. To lower cost of
maintenance and to approach, in the near future, a more
uniform and consistent biosphere of systems a data
integration project was initiated. This project involved the
transition from a number of diverse structures glued together
with scripts with many to many relations to the use of a well
known architectural pattern, the �hub and spoke� model via
an industrial standard product Oracle Interconnect [10]. The
product enabled the possibility of near real time
synchronizations. This paper details the ins and outs and
highlights potential profits and indeed the potential pit falls.

Keywords: Integration, Java, IMS.

1 Introduction

The Universiteit van Amsterdam has a long and renowned
history, being established in 1632 as Athenaeum Illustre. The
population at present comprises 25,000 students and 5,000
members of staff, 55% of which are academics. Having close
links with the city of Amsterdam is an advantage. However
this indirectly implies that the campus itself is highly
distributed with roots in many diverse physical locations.
The underlying technical infrastructure had also reflected
this scaterlogical reality. The Mieloso1 project was initiated
to alleviate this complexity of inner plumbing. Figure 1
pictorially explains what happens when you allow
infrastructure to organically over time grow without
weeding.

The disadvantages of this situation are:

(1) Many to many relations

1 A project initiated by the Development Sector of the
Informatersingscentruim to retain insight and thus control
over provisioning between diverse systems.

If there are numerous interrelationships then the number
of failure paths can only severely increase. Sometimes
these failure paths are obvious and sometimes the
critical path is hidden under the snow of detail.
Maintenance and debugging costs escalate as a
polynomial with each extra node added.

(2) Biodiversity of applications

Biodiversity has a tendency to cost money. The more
applications, the more application specific knowledge is
required to maintain to the in-house baseline standard.
The natural implication of which implies more
consultancy hours, training, documentation and other
types of effort.

(3) Diverse administrative zones

Interface boundaries are the natural place for
miscommunication. The diversity of zones increases the
total length of these boundaries.

(4) Reliability issues

The more paths the greater the opportunity for a
significant failure or bottlenecks, race conditions, errors
in code etc. Inconsistencies in work practices add also to
the background noise.

(5) Scripting is often said to be �write once and be
confused often�

Perl, bash, csh, awk, sed etc. represent sources of instant
code satisfaction. However the code tends to be
personalized to the given administrator involved and
grows in the passing of time into a potential burden. For
example, there has been more than one occasion that one
of the authors has written a complex reglex expression to
crunch a particular input from a text file that fails x
months later on an unexpected entity. The author later
returning to review the reglex and at that moment being
unable to quickly interpret the reglex�s clever yet flawed
inner workings.

(6) Overview and monitoring is difficult

The old adage �What you do not measure, you do not
control� is valid. Diverse systems require diverse
monitoring solutions. Not all the systems produce
counters readable by a useful industrial standard

protocol such as SNMP. [3] Therefore custom code is
normally the end result of the process and is almost a
requirement for smoothing out the diversity of the
underlying network management protocols that each
application may expect.

(7) Inertia towards implementing new technical realities

Technology improves, things change and chances occur,
new conventions and practices become standard. Often
this is not easy to place in a diffuse structure. Certain
questions are more difficult to answer. What if we break
something? Which systems are affected? Uncertainty
breads resistance.

(7) Security

The more diffuse the relationships between systems the
more opportunity for crackers. The greater the number
of lines of glue codes the more opportunity for crackers.
The strongest security is limited by its weakest link.

Packaged Applications,
E-mail, etc..

Mainframe
(Cics, IMS, IDMS�..)

ERP
(Sap, Orcl etc..)

Home Grown,
Flat file,ftp, etc..

Suppliers
(B2B)

Call Center
E-market (B2C)

The wrong way

Figure 1: An example of a non planned organically growing
infrastructure.

However, shown in figure 1, after all is said and done there is
one significant advantage of such a fuzzy approach as. The
growth occurs naturally especially if you do not actively plan.
This growth is the governance equivalent of not weeding
your garden.

ldap

Integration
HubISIS

Blackboard

SAP

Question mark

Digitaal
Portfolio

CRM

Planon

The right way

Figure 2: Hub and spoke integration.

The Mieloso project placed the Oracle Interconnect product
at the centre between an increasing numbers of applications.
Information that is filled in the administration, is sent to the
hub via an adapter. The adapter sends IMS compliant XML
[6] that is processed by the hub and then passed on to other
applications via other instances of adapters. The hub is
responsible for the workflow and is a central point of
monitoring and control. The adapters are composite entities
that can be divided into two: The first part is the queuing
mechanism that ensures stability. The second part is the end
point of the message that does the actual work. If a message
fails to get to the hub or from the other side to the application
the adapter can perform two primary actions; the hub can
ignore the issue or repeat sending the message after a
random period of time. This message queuing adds an extra
degree of stability. Within the UvA circumstance stability is
quite important. An observable pressure on the infrastructure
is related to work practices; every Monday evening there is a
campus wide maintenance slot where the system
administration crews are free to install updates,
replacements, patching etc. During this slot the uptime of all
systems are not always 100% guaranteed. If a router fails and
the network is down then the adapter will keep trying to
deliver its guaranteed message until the misbehaving
subsystem is replaced. Monday evening blues have little
effect now on data synchronization.

Summarizing the properties of the interconnect adoption:

• Hub and spoke model
the hub controlling the flow between applications
and the spokes being the adapters that queue,
translate and send messages and convert to native
events.

• Relatively low latency
Message passing from start point to finish node if

not interrupted can be measured under normal
circumstances in seconds.

• Trivial Load distribution
it is possible to block the next request to an adapter
until the last message has finished delivering its
payload correctly. This allows for load distribution
flattening.

• Reliability through message queuing
if a connection fails, a message may be queued or
ignored according to the logic of the situation.

• A Number of standard adapters
HTTP, FTP, Advanced Queue exists. Note, in
reality there will be in most common deployment
scenarios much custom coding

• Java SDK for building your own adapters.
The development sector here at UvA has
standardized their production effort around the Java
programming language. Therefore Java API�s are
quite helpful and part of the buy in decision of any
project.

• Extra adapters for an extra price.
Adapters for Peoplesoft and SAP products are
available. The SAP adapter being of potential
interest due to the nature of our main administration
systems

• Kiss methodology.
Keep It Simple Stupid; the team used a standard
HTTPS adapter instead of building on the generic
adapter. All custom coding was done from the
applications side cleanly separating responsibility
between configuration of the infrastructure and
application specific code.

2 10 km view

In this section the overall process is described and in the
following section the details of synchronization between the
student administration and Blackboard [5] are zoomed into
so as to give you an idea of the flavour of a �typical�
implementation of an adapter.

The Mieloso project in phase one integrated the student
administration with Blackboard and LDAP [4] and indirectly
through LDAP the mail system for students and an Active
Directory forest.

HUBStudent
Administration

Advanced
Queue

HTTP
Adapter

LDAP

HTTP Adapter BlackBoard

System X1..Xn
Staff

Administration

1

2 3

4

5

Advanced
Queue

HTTP Adapter

Phase One

Phase X

Student
Mail

Figure 3: A simplified hub and spoke integration for LDAP,
student mail and Blackboard. Phase X shows the pieces of
the jigsaw required to add extra applications and data
drivers.

Figure 3 shows the sequence of events for creating a new
user.

(1) An event, in this case a user creation event, triggers a
message being sent via an advanced queue adapter to
the hub.

(2) The message is processed and sent through an HTTP
adapter to a servlet. The format of the message is XML
in a binary stream. The XML conforms to the IMS
enterprise schema. This standardizing increases the
opportunity for future compatibility.

(3) The servlet updates LDAP and then sends the e-mail
address back of the newly created record. in an updated
IMS XML message.

(4) The hub sends the e-mail address as a field in the
modified IMS XML message to a custom Java Server
Page (JSP) in Blackboard.

(5) The JSP through a relatively complex series of events
makes the user. A 200 OK response is then sent back
and the message is removed from the queue. If an error
occurs, than depending upon its value the adapter can
decide to repeat sending the message or ignore the
issue.

An HTTPS adapter [8] was found to be a safe solid bet. The
adapter can send messages via both the HTTP 1.0 and HTTP
1.1 protocol standards [7], using HTTP POST and GET
operations. The messages are sent in the form of an XML
binary stream. To reply to the adapter is a matter of sending
a status code back. Within the project it was decided to
attach to applications via only this one type of adapter and
thus allow for homogenous configuration and testing. At no
point was the decision to simplify regretted.

The most important design compromise was the use of XML
in IMS (Enterprise) format [9]. This implied an extra
programming effort to write a custom XML parser, but in
return promised the most likely possibility later of out of the
box interoperability with other applications. Further adding
extra applications and data sources to the hub would be
much easier in any following phase of the project, the parser
being reusable for future joining. This is directly due to the
reliance on the HTTPS adapter for the applications and the
advanced queue adapter for the main administration data
resources. Most of the configuration would be the same and
only minor nudges would thus be necessary. Of course
custom coding would still occur natively, but in well defined
locations and when Java is involved a common code base
can be enforced and reused by an experienced and battle
hardened team.

3 The Blackboard adapter

Blackboard as a pilot started in the year 2000. Now the
online learning environment is the major e-learning
environment at the University. About 90% of the regular
university courses have an online component. Further,
Blackboard is coupled with LDAP directory Services via Perl
scripts for record synchronization. Qua usage is the system at
times a little busy, especially between the hours of 11am-
4pm. In the third quarter of 2004 there were 431,213 visits
with an average session length of around 9 minutes
comprising 36,000,000 hits. This translates visually to figure
4. The figure shows unique content browsed per hour against
date. The lower peaks are in the weekends.

Figure 4: Unique content hits per hour vs. date in April 2005
as measured by a UvA specific management system [1].

Counter Type Value

Number of active users 2

Courses enabled
Average enrolment per course for all
courses.
Number of enrolments in courses

Groups
Average group size
Group memberships
No of content files known to system

14,450

3,375
62.50

248,000

4,200
12.80

53,750
153,000

Table 1 Snapshot of UvA Blackboard counters as of April
24th 2005.

The new infrastructure needs to be able to deal with at least
the historical volume of change and a potential bursty nature
at the beginning of semesters. Table 1 outlines relevant
counters. From the table it can clearly be seen that if ever the
database needs to be filled from scratch then the total product
of events needed to create a course is dominated by the
250,000 associated course enrolments.

Blackboard has a snapshot tool for data, that can import
either comma separated or xml formatted text files for record
synchronization. This tool has in Holland previously been
used in a number of data integration projects []. This
command line tool is based on the Java based Blackboard
data integration API. After careful consideration and
discussion it was decided to use the same API to achieve our
predefined goals. Blackboard is proprietary software;
however the integration API is openly published. This API
was extensively applied via writing a wrapper of UvA
specific libraries. The libraries performed XML parsing,
workflow, marshalling and logging and managed all the
little details to our in-house style. The libraries were
imported and called through a thin layer of logic
encapsulated in JSP. Later, when the message is sent from
the HTTPS adapter it calls the JSP. The JSP checks whether
the call is valid, in this case against an IP address manager.
Next the page calls the underlying wrapper libraries and
through them the data integration API layer. The libraries
perform the required actions against java objects that sit in
the same Java Virtual Machine (JVM) as part of the
Blackboard servlet or directly against the underlying
database. Depending on the outcome the JSP simply returns
a status code. This is clearly shown in figure 5.

2 This is measured by a date mentioned in the last login field
of the accumulator table. This table is purged to a statistics
database once a month and thus obviously defines the users
logged in during the last month.

HTTPS ADAPTER
J
S
P

IP
Manager

Data
Integration

API

B
L
A
C
K
B
O
A
R
D

IMS
XML

POST

200 OK
800 ERROR

U
V
A

L
I
B

Figure 5: Simplified diagram of the design of the Blackboard
synchronization.

The customized part of the adapter enabled the following
functionality:

Creation, deletion, modification

(1) Person(s)
New persons were created with a random password.
The password was not directly required as
Blackboard authenticated against LDAP. The
random password ensured that no one could hijack
the account in a fallback situation when the LDAP
binding failed.

(2) Course(s)
A new course is created if a course does not exist
that is similar from the year before. If the course
exists then certain parts of the course are copied
including course documents and instructor
enrollments, but not student enrollments. Yes, this
turned out to be a tricky piece of code. The
course copying was achieved via a proximity search
on name and relied heavily on the SQL like
statement to find the older course names. Please
note that this part of the code is tender and may
change over the course of time.

(3) Course enrollment(s)
A user may exist once in Blackboard, but also per
course that the user is enrolled in. The reason for
this is that a student has per course entitlements that
are properties of a given instance of the enrollment.

(4) Workgroup(s)
Workgroups can exist under courses. Members of a
workgroup may share a group�s email address,
discussion board, virtual classroom and also a
common file sharing mechanism.

(5) Workgroup membership(s)
A workgroup membership is first a member of a
course and then a member of a group. The overall
entitlements are a combination of all these
instances.

From the previous list it soon becomes obvious that there is
an order of operation to messages passing from student
administration to the application. A course needs to be made,
then the students and instructors need to be enrolled and then
the groups need to be generated and finally the enrolled
member in the course needs also to be enrolled in the group.
The supply chain can be quite long. Out of order processing
would logically fail. Consistency was enforced by applying
well defined business logic via constraints within the data
input application of the student administration.

4 Lessons Learnt

The Mieloso project turned out to have a considerable
learning curve associated with it. The configuration of the
Oracle Interconnect product was detailed and securing the
system required consideration in every phase and every pour
of each phase. Each extra application required specific extra
knowledge. The leaving of an audit trail by the hub and by
the adapters was helpful generating a reasonable overview
and solid base for planning and debugging. In general the
system has proven itself robust and reliable not giving us as
developers any heartburn. IMS XML parsing cost us extra
effort, but has measurable benefits in the future. The use of
XML in IMS enterprise format gives us confidence of
relevance in the near to middle term future for the HTTPS
adapter and also as an escape route for applications that now
read this format but may be split off from Oracle
Interconnect when necessary as the technological/political
landscape changes later.

From the team programmer perspective within this project
Java was a good language for maintenance. Code is split into
classes with easily definable responsibilities. The use of UML
[11] especially the Class and sequence diagram gives a
pictorially intuitive understanding of the overall relationships
in the design. The Blackboard Java API was comprehensive
enough for our requirement. However, there was
unexpectedly a too steep learning curve for the API. In fact
because of the lack of documentation and code examples,
much trial and error was required at the time of the
development window in the project.

The adapters and holding servlet containers required much
tweaking, but once configured remained stable and
predictable.

On the subject of reusability: once the overall structure was
in place and running it was found to be easier to expand than
a long series of Perl scripts. The HTTPS adapter allows for a
deliberate monoculture of similarities. Much of the code is
effectively already written for any future addition to the

infrastructure. The XML parsing can be replicated and the
basic servlet structure is common to a majority of modern
applications.

The negatives: one must state that you must look carefully at
the range of adapters available. The range probably will not
reach to every part of your requirements. Be prepared for
much custom coding despite the softly flouted allure of
standardization and do not think that the adapters will just
birth straight out of the box and fit magically within your
environment. Look carefully at other solutions especially
identity management Metadirectory products [2]. Where do
you want to keep your identity information? Have you a
campus wide uid that needs to be consolidated? This project
was specifically not about identity more about general
governance issues.

Keep design simple. For example the XML parsing within
the native part of the adapter was designed to understand
multiple objects in XML, but later that was found not to be
required.

Finally, keeping the system up and tuned may very well
depend on many details so spread knowledge within the
organization.

5 Summary and Conclusions

From the discussion in this article it can be seen that it is
viable to replace diverse communication relationships with a
hub and spoke architecture using an industrial standard
product. The deployment itself has had no significant issues.
The one noticeable negative is that the initial learning cost
was high, but does tail off over phased iterations. The reuse
of Java based code and adapter configuration will
dramatically lower development efforts in future iterations.

Future proofing any product is difficult but IMS XML
message passing no matter which product uses it is a solid
basis for such an attempt. Oversight and control of our
technological process driven backyard has been refined,
planning made easier and adaptation to new situations
simplified. The many benefits out weigh the initial costs and
yes it was a fun project.

Acknowledgements

The team would like to acknowledge the support and detailed
feedback given by Marc van den Berg and look forward to
the continuation of these joint efforts.

References

[1] A. Berg, V. Maijer, F. Benneker. �Blackboard 6 usage
patterns and implications for the Universiteit van
Amsterdam�, Eunis proceedings 2003.

[2] B. Belling. �Architecting your data and Metadirectory
model�.
http://www.educause.edu/ir/library/powerpoint/nmd0310.pps

[3] D. Levi, P. Meyer �RFC 3413: Simple Network
Management Protocol (SNMP) Applications�.
http://www.isi.edu/in-notes/rfc3413.txt

[4] M. Wahl, T. Howes, S. Kille.�RFC 2251: Lightweight
Directory Access Protocol�.
http://www.ietf.org/rfc/rfc2251.txt

[5] Blackboard.
http://www.blackboard.com

[6] Extensible Markup Lanaguage XML.
http://www.w3.org/XML/

[7] HTTP protocol.
http://www.w3.org/Protocols/

[8] HTTPS adapter.
http://www.oracle.com/technology/products/integration/htdoc
s/httpsadapter.html

[9] IMS Enterprise Best Practice and Implementation Guide.
http://www.imsglobal.org/enterprise/enbest01.html

[10] Oracle Interconnect.
http://www.oracle.com/technology/products/integration/htdoc
s/interconnect902ds.htm

[11] Unified Modelling Language UML.
http://www.uml.org/

[12] Universiteit van Amsterdam.
http://www.uva.nl http://www.uva.nl/organisatie/object.cfm

